3.2668 \(\int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^{7/2}} \, dx\)

Optimal. Leaf size=160 \[ -\frac {12758 \sqrt {\frac {11}{3}} \operatorname {EllipticF}\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right ),\frac {35}{33}\right )}{6615}-\frac {2 \sqrt {1-2 x} (5 x+3)^{5/2}}{15 (3 x+2)^{5/2}}-\frac {118 \sqrt {1-2 x} (5 x+3)^{3/2}}{315 (3 x+2)^{3/2}}-\frac {12758 \sqrt {1-2 x} \sqrt {5 x+3}}{6615 \sqrt {3 x+2}}+\frac {31588 \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6615} \]

[Out]

31588/19845*EllipticE(1/7*21^(1/2)*(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-12758/19845*EllipticF(1/7*21^(1/2)*
(1-2*x)^(1/2),1/33*1155^(1/2))*33^(1/2)-118/315*(3+5*x)^(3/2)*(1-2*x)^(1/2)/(2+3*x)^(3/2)-2/15*(3+5*x)^(5/2)*(
1-2*x)^(1/2)/(2+3*x)^(5/2)-12758/6615*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {97, 150, 158, 113, 119} \[ -\frac {2 \sqrt {1-2 x} (5 x+3)^{5/2}}{15 (3 x+2)^{5/2}}-\frac {118 \sqrt {1-2 x} (5 x+3)^{3/2}}{315 (3 x+2)^{3/2}}-\frac {12758 \sqrt {1-2 x} \sqrt {5 x+3}}{6615 \sqrt {3 x+2}}-\frac {12758 \sqrt {\frac {11}{3}} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6615}+\frac {31588 \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6615} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(2 + 3*x)^(7/2),x]

[Out]

(-12758*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(6615*Sqrt[2 + 3*x]) - (118*Sqrt[1 - 2*x]*(3 + 5*x)^(3/2))/(315*(2 + 3*x)
^(3/2)) - (2*Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(15*(2 + 3*x)^(5/2)) + (31588*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7
]*Sqrt[1 - 2*x]], 35/33])/6615 - (12758*Sqrt[11/3]*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/6615

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rule 150

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rubi steps

\begin {align*} \int \frac {\sqrt {1-2 x} (3+5 x)^{5/2}}{(2+3 x)^{7/2}} \, dx &=-\frac {2 \sqrt {1-2 x} (3+5 x)^{5/2}}{15 (2+3 x)^{5/2}}+\frac {2}{15} \int \frac {\left (\frac {19}{2}-30 x\right ) (3+5 x)^{3/2}}{\sqrt {1-2 x} (2+3 x)^{5/2}} \, dx\\ &=-\frac {118 \sqrt {1-2 x} (3+5 x)^{3/2}}{315 (2+3 x)^{3/2}}-\frac {2 \sqrt {1-2 x} (3+5 x)^{5/2}}{15 (2+3 x)^{5/2}}+\frac {4}{945} \int \frac {\left (\frac {999}{4}-\frac {4035 x}{2}\right ) \sqrt {3+5 x}}{\sqrt {1-2 x} (2+3 x)^{3/2}} \, dx\\ &=-\frac {12758 \sqrt {1-2 x} \sqrt {3+5 x}}{6615 \sqrt {2+3 x}}-\frac {118 \sqrt {1-2 x} (3+5 x)^{3/2}}{315 (2+3 x)^{3/2}}-\frac {2 \sqrt {1-2 x} (3+5 x)^{5/2}}{15 (2+3 x)^{5/2}}+\frac {8 \int \frac {-\frac {73785}{8}-\frac {118455 x}{2}}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx}{19845}\\ &=-\frac {12758 \sqrt {1-2 x} \sqrt {3+5 x}}{6615 \sqrt {2+3 x}}-\frac {118 \sqrt {1-2 x} (3+5 x)^{3/2}}{315 (2+3 x)^{3/2}}-\frac {2 \sqrt {1-2 x} (3+5 x)^{5/2}}{15 (2+3 x)^{5/2}}-\frac {31588 \int \frac {\sqrt {3+5 x}}{\sqrt {1-2 x} \sqrt {2+3 x}} \, dx}{6615}+\frac {70169 \int \frac {1}{\sqrt {1-2 x} \sqrt {2+3 x} \sqrt {3+5 x}} \, dx}{6615}\\ &=-\frac {12758 \sqrt {1-2 x} \sqrt {3+5 x}}{6615 \sqrt {2+3 x}}-\frac {118 \sqrt {1-2 x} (3+5 x)^{3/2}}{315 (2+3 x)^{3/2}}-\frac {2 \sqrt {1-2 x} (3+5 x)^{5/2}}{15 (2+3 x)^{5/2}}+\frac {31588 \sqrt {\frac {11}{3}} E\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6615}-\frac {12758 \sqrt {\frac {11}{3}} F\left (\sin ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )|\frac {35}{33}\right )}{6615}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.30, size = 99, normalized size = 0.62 \[ \frac {\sqrt {2} \left (242095 \operatorname {EllipticF}\left (\sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right ),-\frac {33}{2}\right )-31588 E\left (\sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right )|-\frac {33}{2}\right )\right )-\frac {6 \sqrt {1-2 x} \sqrt {5 x+3} \left (87021 x^2+113319 x+36919\right )}{(3 x+2)^{5/2}}}{19845} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[1 - 2*x]*(3 + 5*x)^(5/2))/(2 + 3*x)^(7/2),x]

[Out]

((-6*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(36919 + 113319*x + 87021*x^2))/(2 + 3*x)^(5/2) + Sqrt[2]*(-31588*EllipticE[A
rcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2] + 242095*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2]))/19845

________________________________________________________________________________________

fricas [F]  time = 1.03, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (25 \, x^{2} + 30 \, x + 9\right )} \sqrt {5 \, x + 3} \sqrt {3 \, x + 2} \sqrt {-2 \, x + 1}}{81 \, x^{4} + 216 \, x^{3} + 216 \, x^{2} + 96 \, x + 16}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="fricas")

[Out]

integral((25*x^2 + 30*x + 9)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(81*x^4 + 216*x^3 + 216*x^2 + 96*x + 1
6), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (5 \, x + 3\right )}^{\frac {5}{2}} \sqrt {-2 \, x + 1}}{{\left (3 \, x + 2\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="giac")

[Out]

integrate((5*x + 3)^(5/2)*sqrt(-2*x + 1)/(3*x + 2)^(7/2), x)

________________________________________________________________________________________

maple [C]  time = 0.02, size = 314, normalized size = 1.96 \[ -\frac {\left (5221260 x^{4}+7321266 x^{3}-284292 \sqrt {2}\, \sqrt {5 x +3}\, \sqrt {3 x +2}\, \sqrt {-2 x +1}\, x^{2} \EllipticE \left (\frac {\sqrt {110 x +66}}{11}, \frac {i \sqrt {66}}{2}\right )+2178855 \sqrt {2}\, \sqrt {5 x +3}\, \sqrt {3 x +2}\, \sqrt {-2 x +1}\, x^{2} \EllipticF \left (\frac {\sqrt {110 x +66}}{11}, \frac {i \sqrt {66}}{2}\right )+1328676 x^{2}-379056 \sqrt {2}\, \sqrt {5 x +3}\, \sqrt {3 x +2}\, \sqrt {-2 x +1}\, x \EllipticE \left (\frac {\sqrt {110 x +66}}{11}, \frac {i \sqrt {66}}{2}\right )+2905140 \sqrt {2}\, \sqrt {5 x +3}\, \sqrt {3 x +2}\, \sqrt {-2 x +1}\, x \EllipticF \left (\frac {\sqrt {110 x +66}}{11}, \frac {i \sqrt {66}}{2}\right )-1818228 x -126352 \sqrt {2}\, \sqrt {5 x +3}\, \sqrt {3 x +2}\, \sqrt {-2 x +1}\, \EllipticE \left (\frac {\sqrt {110 x +66}}{11}, \frac {i \sqrt {66}}{2}\right )+968380 \sqrt {2}\, \sqrt {5 x +3}\, \sqrt {3 x +2}\, \sqrt {-2 x +1}\, \EllipticF \left (\frac {\sqrt {110 x +66}}{11}, \frac {i \sqrt {66}}{2}\right )-664542\right ) \sqrt {-2 x +1}\, \sqrt {5 x +3}}{19845 \left (10 x^{2}+x -3\right ) \left (3 x +2\right )^{\frac {5}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x+3)^(5/2)*(-2*x+1)^(1/2)/(3*x+2)^(7/2),x)

[Out]

-1/19845*(2178855*2^(1/2)*EllipticF(1/11*(110*x+66)^(1/2),1/2*I*66^(1/2))*x^2*(5*x+3)^(1/2)*(3*x+2)^(1/2)*(-2*
x+1)^(1/2)-284292*2^(1/2)*EllipticE(1/11*(110*x+66)^(1/2),1/2*I*66^(1/2))*x^2*(5*x+3)^(1/2)*(3*x+2)^(1/2)*(-2*
x+1)^(1/2)+2905140*2^(1/2)*EllipticF(1/11*(110*x+66)^(1/2),1/2*I*66^(1/2))*x*(5*x+3)^(1/2)*(3*x+2)^(1/2)*(-2*x
+1)^(1/2)-379056*2^(1/2)*EllipticE(1/11*(110*x+66)^(1/2),1/2*I*66^(1/2))*x*(5*x+3)^(1/2)*(3*x+2)^(1/2)*(-2*x+1
)^(1/2)+968380*2^(1/2)*(5*x+3)^(1/2)*(3*x+2)^(1/2)*(-2*x+1)^(1/2)*EllipticF(1/11*(110*x+66)^(1/2),1/2*I*66^(1/
2))-126352*2^(1/2)*(5*x+3)^(1/2)*(3*x+2)^(1/2)*(-2*x+1)^(1/2)*EllipticE(1/11*(110*x+66)^(1/2),1/2*I*66^(1/2))+
5221260*x^4+7321266*x^3+1328676*x^2-1818228*x-664542)*(-2*x+1)^(1/2)*(5*x+3)^(1/2)/(10*x^2+x-3)/(3*x+2)^(5/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (5 \, x + 3\right )}^{\frac {5}{2}} \sqrt {-2 \, x + 1}}{{\left (3 \, x + 2\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(5/2)*(1-2*x)^(1/2)/(2+3*x)^(7/2),x, algorithm="maxima")

[Out]

integrate((5*x + 3)^(5/2)*sqrt(-2*x + 1)/(3*x + 2)^(7/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {1-2\,x}\,{\left (5\,x+3\right )}^{5/2}}{{\left (3\,x+2\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((1 - 2*x)^(1/2)*(5*x + 3)^(5/2))/(3*x + 2)^(7/2),x)

[Out]

int(((1 - 2*x)^(1/2)*(5*x + 3)^(5/2))/(3*x + 2)^(7/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)**(5/2)*(1-2*x)**(1/2)/(2+3*x)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________